[Avg. reading time: 4 minutes]

MLflow Experiment Structure

A typical Chemistry experiment we did in school days.

Experiment (ML Project)Run #Inputs (Parameters)Process (Code/Recipe)Outputs (Artifacts)Metrics (Results)
Acid + Base ReactionRun 1Acid=10ml, Base=5mlStirred 2 mins, room tempBeaker with solutionpH=7.0
Acid + Base ReactionRun 2Acid=10ml, Base=7mlStirred 2 mins, room tempBeaker with solutionpH=6.2
Acid + Base ReactionRun 3Acid=10ml, Base=7mlStirred 5 mins, heatBeaker with solutionpH=6.0, Color=yellow
  • Experiment → Group of related trials (like a project or ML task).
  • Run → One trial with a unique ID (just like a single lab experiment entry).
  • Inputs (Parameters) → Model hyperparameters (learning rate, batch size, etc.).
  • Process (Code/Recipe) → Training code or pipeline steps.
  • Outputs (Artifacts) → Models, plots, datasets, or serialized files.
  • Metrics (Results) → Accuracy, loss, F1-score, etc.
MLflow
│
├── Experiment A
│     ├── Run 1
│     │     ├── Parameters
│     │     ├── Metrics
│     │     ├── Artifacts
│     │     └── Tags
│     ├── Run 2
│     │     ├── Parameters
│     │     ├── Metrics
│     │     ├── Artifacts
│     │     └── Tags
│     └── Run 3
│           ├── Parameters
│           ├── Metrics
│           ├── Artifacts
│           └── Tags
│
└── Experiment B
      ├── Run 1
      ├── Run 2
      └── Run N
git clone https://github.com/gchandra10/uni_multi_model.git

#mlflow #experiment #runVer 0.3.6

Last change: 2025-12-02