Home
Disclaimer
Required Tools
1.
MLOps & AI Overview
1.1.
Introduction
1.2.
AI then and now
1.2.1.
Expert Systems
1.2.2.
Fuzzy Logic
1.2.3.
Machine Learning
1.2.4.
Generative AI
1.2.5.
Reinforcement Learning
1.2.6.
Agentic AI
1.2.7.
MLOps
1.2.8.
Differences
1.3.
Examples
1.4.
Job Opportunities
1.5.
Terms to Know
1.6.
Model vs Library vs Framework
1.6.1.
Explanation
1.7.
Statistical vs ML Models
1.8.
Types of ML Models
1.9.
ML Lifecycle
1.9.1.
Data Preparation
1.9.2.
Data Cleaning
1.9.3.
Data Imputation
1.9.4.
Data Encoding
1.9.5.
Feature Engineering
1.9.5.1.
Vectors
1.9.5.2.
Embeddings
1.10.
Life Before MLOps
1.11.
Quiz
2.
Developer Tools
2.1.
Introduction
2.2.
UV
2.3.
Other Python Tools
2.4.
Error Handling
2.5.
Unit Test
2.6.
DuckDB
2.7.
JQ
2.8.
SQLite
3.
MLflow Introduction
3.1.
MLflow Experiment Structure
3.2.
MLflow Features
3.3.
YAML
4.
Cloud
4.1.
Overview
4.2.
Types
4.3.
Challenges
4.4.
AWS
4.4.1.
AWS Global Infra
4.4.2.
CIDR
4.4.3.
EC2
4.4.4.
S3
4.4.5.
IAM
4.4.6.
CloudShell
4.5.
Terraform
5.
MLflow Model Lifecycle
5.1.
Decorator
5.2.
HTTP Basics
5.3.
pydantic
5.4.
Model Flavors
5.5.
Model Serving
5.6.
Model Serving Types
5.7.
Auto ML
5.8.
CPU vs GPU
6.
Tools
6.1.
Containers
6.1.1.
VMs or Containers
6.1.2.
What container does
6.1.3.
Container Examples
7.
Productionizing ML Models
7.1.
Observability
7.2.
Drift
7.3.
Security
7.4.
Validation Frameworks
7.5.
Model Compression
7.6.
Ollama
7.7.
Best Practices
7.8.
SAAS Tools
8.
Good Reads
Tags
Light
Rust
Coal
Navy
Ayu
MLOps and AI
[Avg. reading time: 2 minutes]
MLOps & AI Overview
MLOps & AI Overview
Introduction
AI then and now
Expert Systems
Fuzzy Logic
Machine Learning
Generative AI
Reinforcement Learning
Agentic AI
MLOps
Differences
Examples
Job Opportunities
Terms to Know
Model vs Library vs Framework
Explanation
Statistical vs ML Models
Types of ML Models
ML Lifecycle
Data Preparation
Data Cleaning
Data Imputation
Data Encoding
Feature Engineering
Vectors
Embeddings
Ver 0.3.6